Testing of ceramics, abrasives and refractories
The brittleness of ceramic materials and the presence of aggregates are not obstacles for the elastic modulus measurement by Sonelastic® Systems. It does not apply static loads to perform the characterization of the elastic moduli, only small amplitude impulse excitation and vibration.
Sonelastic® relies on the Impulse Excitation Technique for accurate and non-destructive characterization of elastic moduli (E, G and Poisson ratio) and damping of materials in accordance with the ASTM E1876, C1259 and C1548 standards. The characterization of both damping and elastic moduli reveals information about the presence and evolution of cracks, micro-cracks and defects in the material, as well as phase transformations.
Applications
Sonelastic® Systems have a wide range of applications for ceramic and refractory materials:
- Design and monitoring of firing cycle.
- Quality control of post-firing.
- Detection of cracks, micro-cracks and delamination.
- Study of oxidation, corrosion and cooking process.
- Thermal shock damage assessment.
- Finite element modeling refinement.
Sonelastic® Systems are suitable for testing:
- Technical ceramics.
- Electronic ceramics.
- Traditional ceramics (roof tiles, bricks and white wares).
- Pre-shaped refractories:
- High alumina (electrofused alumina and tabular).
- Alumina (alumina-chromium, alumina-carbon, alumina-spinel, etc.).
- Antacids and Insulators.
- Magnesians (magnesia-carbon, magnesia-chrome and magnesia-spinel).
- Mullite and mullite-zirconia.
- Chemically bound.
- Silico-aluminous.
- Refractory castables:
- Dry / wet mortars.
- Self-flow / vibrated.
- Zero / low cement.
- Grip ceramic / phosphate.
- Projection / punch / projection.
- Insulators.
Resistance to thermal shock damage is an important feature of refractories because since it determines their performance and lifetime in various applications. The use of more sensitive and non-destructive techniques for the evaluation of damage is highly desirable to facilitate the development and quality control of these materials. It also helps understanding the microstructural changes that occur in the damaged material.
Sonelastic® Systems application examples related to refractories and ceramic materials
PennState Materials Research Institute (USA)
Application: Characterization of cold sintered ceramics, technical ceramics and advanced materials.
Contact person: Asst. Prof. Amira Meddeb.
Application: Characterization of refractory materials for the refinement of steelmaking equipment finite element analysis (FEA).
Contact person: R&D Engineer PhD Cristina Lausin.
Application: Development of ceramic materials.
Contact person: Mr. David Miskovic.
Application: Development, quality control and technical assistance of refractory materials.
Contact person: Researcher Bárbara Borges.
Application: R&D of refractory materials, thermal shock damage assessment and optimization of firing cycles.
Contact person: Prof. Dr. Victor Pandolfelli.
Application: Technical assistance for ceramic and refractory materials.
Contact person: Eng. Caio Exposito.
Application: Development of porous alumina ceramics.
Contact person: Prof. Dr. Rafael Salomão.
Application: Characterization of electronic ceramics (PZT).
Contact person: Senior R&D Engineer Maria Aparecida Pinheiro dos Santos.
Application: R&D of refractory materials.
Contact person: Dra. Martinez Analia Gladys.
Application: Development and characterization of technical ceramics, ceramic tiles and red ceramics.
Contact person: Dr. Oscar Rubem Klegues Montedo.
Application: Development and characterization of technical ceramics and refractory materials.
Contact person: Prof. Dr. Carlos Pérez Bergmann.
Application: Development and characterization of ceramic materials.
Contact person: Prof. Dr. Wilfredo Montealegre Rubio.
Publications employing the Sonelastic® Systems
Y. S. Lagorio, S. E. Gass, E. R. Benavidez, A. G. T. Martínez.Thermomechanical evaluation of MgO–C commercial bricks. Ceramics International, 2021, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2021.12.220.
S.E. Gass, W.A. Calvo, M.N. Moliné, P.G. Galliano, A.G. T. Martinez. Combined effects of the graphite content and addition of aluminum in the characteristics of resin-bonded MgO-C bricks. Materials Today Communications, Volume 30, 2022, 103057, ISSN 2352-4928, https://doi.org/10.1016/j.mtcomm.2021.103057.
A. Cristante, F.Vernilli. Comparação de Danos por Choque Térmico e Corrosão por Escória em Refratários Calcináveis. Interceram 3/2021, ISSN: 0020-5214, https://doi.org/10.1007/s42411-021-0462-z.
A. Cristante, L. A. Nascimento, E. S. Neves, F. Vernilli. Study of the castable selection for blast furnace blowpipe. Ceramics International, 2021, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2021.03.281.
A. Gallardo-López, C. Muñoz-Ferreiro, C. López-Pernía C, Jiménez-Piqué E, F Gutiérrez-Mora, A Morales-Rodríguez, R. Poyato R. Critical Influence of the Processing Route on the Mechanical Properties of Zirconia Composites with Graphene Nanoplatelets. Materials (Basel), 2020 Dec 29,14(1):108, doi: 10.3390/ma14010108.
B. G. Simba, M. V. Ribeiro, M. F. R.P.Alves, J. E. V. Amarante, K. Strecker, C. Santos. Effect of the temperature on the mechanical properties and translucency of lithium silicate dental glass-ceramic. Ceramics International, Volume 47, Issue 7, Part A, 2021, Pages 9933-9940, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2020.12.137.
R. Salomão, C. C. Arruda, V.C. Pandolfelli, L. Fernandes. Designing high-temperature thermal insulators based on densification-resistant in situ porous spinel. Journal of the European Ceramic Society, Volume 41, Issue 4, 2021, Pages 2923-2937, ISSN 0955-2219, https://doi.org/10.1016/j.jeurceramsoc.2020.12.014
R. Salomão, I. M. M. D, L. Fernandes. Porogenesis in the Alumina-Brucite-Magnesia-Spinel System. Interceram. - Int. Ceram. Rev. 69, 46–53 (2020), https://doi.org/10.1007/s42411-020-0096-6
C. Muñoz-Ferreiro, A. Morales-Rodríguez, A. Gallardo-López, R. Poyato. A first insight into the microstructure and crack propagation in novel boron nitride nanosheet/3YTZP composites. Boletín de la Sociedad Española de Cerámica y Vidrio, Volume 60, Issue 2, 2021, Pages 128-136, ISSN 0366-3175, https://doi.org/10.1016/j.bsecv.2020.02.003.
D. C. N. Fabris, M. B. Polla, J. Acordi, A. L. Luza, A. M. Bernardin, A. Noni, O. R. K. Montedo. Effect of MgO·Al2O3·SiO2 glass-ceramic as sintering aid on properties of alumina armors. Materials Science and Engineering: A, Volume 781, 2020, 139237 ISSN 0921-5093, https://doi.org/10.1016/j.msea.2020.139237.
A. Gallardo-López, J. Castillo-Seoane, C. Muñoz-Ferreiro, C. López-Pernía, A. Morales-Rodríguez, R. Poyato. Flexure Strength and Fracture Propagation in Zirconia Ceramic Composites with Exfoliated Graphene Nanoplatelets. Ceramics 2020, 3, 78-91. https://doi.org/10.3390/ceramics3010009
M. H. Moreira, T. M. Cunha, M. G. G. Campos, M. F. Santos, T. Santos Jr, D. André, V. C. Pandolfelli. Discrete element modeling—A promising method for refractory microstructure design. American Ceramic Society Bulletin 99:22-28
M. Hahn. Flexoelectricity in the Barium Strontium Titanate (BST) System for Hydrophones. Materials Science and Engineering, Master Thesis. PennState.
Silva, P. C., Moreira, L. P., Alves, M. F. R. P., Campos, L. Q. B., Simba, B. G., & Santos, C. Experimental analysis and finite element modeling of the piston-on-three balls testing of Y-TZP ceramic. Cerâmica, 66(377), 30-42. Epub December 13, 2019. https://dx.doi.org/10.1590/0366-69132020663772784.
Salomão, R.; FERREIRA, V. L. ; COSTA, L. M. M. ; OLIVEIRA, I. R. . Effects of the initial CaO-Al 2 O 3 ratio on the microstructure development and mechanical properties of porous calcium hexaluminate. CERAMICS INTERNATIONAL, v. 44, p. 2626-2631, 2017. https://doi.org/10.1016/j.ceramint.2017.11.010.
Santos, J.L., Marçal, R.L.S.B, Jesus, P.R.R., Gomes, A.V., Lima, E.P., Rocha, D.N., Santos, M.A.P., Nascimento, L.F.C., Monteiro, S.N., Louro, L.H.L. Mechanical properties and ballistic behavior of LiF-added Al2O3–4wt%Nb2O5 ceramics. Journal of Materials Research and Technology, Volume 7, Issue 4, 2018, Pages 592-597, ISSN 2238-7854. https://doi.org/10.1016/j.jmrt.2018.09.005.
Salomão, R. Porogenic Behavior of Water in High-Alumina Castable Structures. Advances in Materials Science and Engineering, v. 2018, p. 1-10, 2018. https://doi.org/10.1155/2018/2876851.
Montedo, O.R.K., Milak, P.C., Faller, C.A., Peterson, M. & Agenor, N.J. Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior. Materials Research, 21(1), e20170012. Epub October 19, 2017. https://dx.doi.org/10.1590/1980-5373-mr-2017-0012
P. Faust Gouveia, L.M. Schabbach, J.C.M. Souza, B. Henriques, J.A. Labrincha, F.S. Silva, M.C. Fredel, J. Mesquita-Guimarães. New perspectives for recycling dental zirconia waste resulting from CAD/CAM manufacturing process. Journal of Cleaner Production, Volume 152, 20 May 2017, Pages 454-463. ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2017.03.117
Minatto, F. D., Alexandre, E. da S., Noni Jr., A. De, & Montedo, O. R. K.. (2017). Estudo de composições cerâmicas à base de alumina e vitrocerâmico do sistema LZSA para obtenção de estruturas multicamadas por tape casting. Cerâmica, 63(366), 178-186. https://dx.doi.org/10.1590/0366-69132017633662098
Rafael Salomão, Leandro Fernandes. Porous co-continuous mullite structures obtained from sintered aluminum hydroxide and synthetic amorphous silica. Journal of the European Ceramic Society, Volume 37, Issue 8, July 2017, Pages 2849-2856. ISSN 0955-2219. https://doi.org/10.1016/j.jeurceramsoc.2017.03.017
Vanesa Muñoz, Analía G. Tomba Martinez. Factors controlling the mechanical behavior of alumina–magnesia–carbon refractories in air. Ceramics International, Volume 42, Issue 9, 2016, Pages 11150-11160. ISSN 0272-8842. http://dx.doi.org/10.1016/j.ceramint.2016.04.021
J. Jiusti, E.H. Kammer, L. Neckel, N.J. Lóh, W. Trindade, A.O. Silva, O.R.K. Montedo, A. De Noni Jr., Ballistic performance of Al2O3 mosaic armors with gap-filling materials. Ceramics International, Volume 43, Issue 2, 1 February 2017, Pages 2697-2704. ISSN 0272-8842. https://doi.org/10.1016/j.ceramint.2016.11.087
Salomão, Rafael; Souza, A. D. V.; Cardoso, P. H. L.. A comparison between Al(OH)3 and Mg(OH)2 as inorganic porogenic agents for alumina. Interceram, v. 64, p. 193-199, 2015.
A.D.V. Souza, L.L. Sousa, L. Fernandes, P.H.L. Cardoso, Rafael Salomão. AlO–Al(OH)-Based castable porous structures. Journal of the European Ceramic Society, Volume 35, Issue 6, 2015, Pages 1943-1954. ISSN 0955-2219. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.01.003
Lucíola L. Sousa, Adriane D.V. Souza, Leandro Fernandes, Vera L. Arantes, Rafael Salomão. Development of densification-resistant castable porous structures from mullite. Ceramics International, Volume 41, Issue 8, 2015, Pages 9443-9454. ISSN 0272-8842. http://dx.doi.org/10.1016/j.ceramint.2015.03.328
Rafaela L.P. Santos, Filipe S. Silva, Rubens M. Nascimento, Fabiana V. Motta, Júlio C.M. Souza, Bruno Henriques, On the mechanical properties and microstructure of zirconia-reinforced feldspar-based porcelain. Ceramics International, Volume 42, Issue 12, 2016, Pages 14214-14221. ISSN 0272-8842. http://dx.doi.org/10.1016/j.ceramint.2016.05.195
Pereira, A. H. A., Fortes, G. M., Schickle, B., Tonnesen, T., Musolino, B., Maciel, C. D., & Rodrigues, J. A.. Correlation between changes in mechanical strength and damping of a high alumina refractory castable progressively damaged by thermal shock. Cerâmica. 2010, vol.56, n.339, pp.311-314. ISSN 0366-6913. http://dx.doi.org/10.1590/S0366-69132010000300016
Pereira, A.H.A.; Nascimento, A. R. C.; Exposito, C. C. D.; Martins, L. T.; Tonnesen, T.; Rodrigues, J. A.. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock. Boletín de la Soc. Española de Cerámica y Vidrio, v. 51, p. 151-156, 2012. eISSN 2173-0431. http://dx.doi.org/10.3989/cyv.222012
Cabrelon, M. D., Pereira, A. H. A., Medeiros, J., Toledo-Filho, R. D., & Rodrigues, J. A.. Efeito do tempo de exposição a uma atmosfera coqueificante na microestrutura e nas propriedades de um concreto refratário usado na indústria petroquímica. Cerâmica. 2012, vol.58, n.346, pp.195-204. ISSN 0366-6913. http://dx.doi.org/10.1590/S0366-69132012000200009
Pereira, A. H. A., Miyaji, D. Y., Cabrelon, M. D., Medeiros, J., & Rodrigues, J. A.. (2014). A study about the contribution of the α-β phase transition of quartz to thermal cycle damage of a refractory used in fluidized catalytic cracking units. Cerâmica, 60(355), 449-456. https://dx.doi.org/10.1590/S0366-69132014000300019
Salomão, Rafael; Kawamura, M.A.; Souza, A.D.V.; Sakihama, J. Hydratable Alumina-Bonded Suspensions: Evolution of Microstructure and Physical Properties During First Heating. Interceram REFRACTORIES, Refractories Manual 2017, page 025.